The Emerging Role for RNA Polymerase II in Regulating Virulence Gene Expression in Malaria Parasites
نویسندگان
چکیده
Plasmodium falciparum causes the most severe form of human malaria and is responsible for a significant public health burden in the developing world. These protozoan parasites invade circulating red blood cells (RBCs) and maintain prolonged infections through an intricate gene-expression switching mechanism that enables immune evasion through antigenic variation [1]. One of the families of genes responsible for this evasion is called var; it is made up of ~60 members, of which approximately two-thirds are found located within subtelomeric heterochromatic regions of the P. falciparum genome, with the remaining third of the family arranged in clusters located in similarly heterochromatinized areas within the internal regions of the chromosomes. The var gene family encodes P. falciparum erythrocyte membrane protein 1 (PfEMP1), a protein displayed on the surface of infected RBCs and considered the primary antigenic determinant required for cytoadherence and sequestration of infected cells, thus enabling them to avoid circulation through the spleen. Only one var gene is expressed at a time, while the other 59 remain transcriptionally silent, and which gene is active switches over the course of an infection. This process allows the parasites to maintain chronic infections through an ever-changing display of PfEMP1 antigens to the immune system. Structurally, each var gene consists of two exons flanking a single, conserved intron with a bidirectional promoter that transcribes noncoding RNAs [2–4]. Although an understanding of the mechanisms that lead to coordinated switching within the var gene family have remained elusive, it has become clear in recent years that epigenetic components, particularly histone modifications, play major roles in determining whether an individual gene will be active or silent. Many of the histone modifications involved in antigenic variation, as well as other aspects of parasite development, have been catalogued. For example, trimethylation of histone H3 at lysine 4 (H3K4me3) denotes transcriptionally active genes [5], including the single active var gene. In contrast, H3K9me3 marks the 59 silent var genes [6,7]. Interestingly, H3K9me3 and another mark, H3K36me3, are very limited in their distribution throughout the genome and are found primarily at gene families that encode variant antigens like var [5,8]. How the enzymes that deposit these marks are recruited to very limited regions of the genome is poorly understood. This short review aims to expand on recent work that sheds light on the recruitment of histone modifiers to narrow regions of chromosomes, specifically var genes, by way of the C-terminal domain of RNA polymerase II (RNA pol II CTD).
منابع مشابه
Down-Regulation of the ALS3 Gene as a Consequent Effect of RNA-Mediated Silencing of the EFG1 Gene in Candida albicans
Background: The most important virulence factor which plays a central role in Candida albicans pathogenesis is the ability of this yeast to alternate between unicellular yeast and filamentous hyphal forms. Efg1 protein is thought to be the main positive regulating transcription factor, which is responsible for regulating hyphal-specific gene expression under most conditions. ALS3 is one of the ...
متن کاملDown-Regulation of sidB Gene by Use of RNA Interference in Aspergillus nidulans
Background: Introduction of the RNA interference (RNAi) machinery has guided the researchers to discover the function of essential vital or virulence factor genes in the microorganisms such as fungi. In the filamentous fungus Aspergillus nidulans, the gene sidB plays an essential role in septation, conidiation and vegetative hyphal growth. In the present study, we benefited from the RNAi strate...
متن کاملRecruitment of PfSET2 by RNA Polymerase II to Variant Antigen Encoding Loci Contributes to Antigenic Variation in P. falciparum
Histone modifications are important regulators of gene expression in all eukaryotes. In Plasmodium falciparum, these epigenetic marks regulate expression of genes involved in several aspects of host-parasite interactions, including antigenic variation. While the identities and genomic positions of many histone modifications have now been cataloged, how they are targeted to defined genomic regio...
متن کاملP-121: Cloning and Expression of The Inosine Triphosphate Pyrophosphatase Gene Variant II in E.coli
Background Environmental and cellular inappropriate conditions can cause damages to cells nucleotide poll. Deamination and oxidation damages interfere with cell�s vital reactions. Inosine triphosphate pyrophosphatase (ITPA), an evolutionary conserved enzyme, plays a critical role in elimination of non-canonical bases. In human genome, the ITPA gene is located on chromosome 20 short arm and tran...
متن کاملEnhancement of RNA Interference Effect in P19 EC Cells by an RNA-dependent RNA Polymerase
Background: RNA interference (RNAi) is a phenomenon uses double-stranded RNA (dsRNA) to specifically inhibit gene expression. The non-specific silencing caused by interferon response to dsRNA in mammalian cells limits the potential of utilizing RNAi to study gene function. Duplexes of 21-nucleotide short interfering dsRNA (siRNA) inhibit gene expression by RNAi. In some organisms, siRNA can als...
متن کامل